博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
人工神经网络——感知器介绍
阅读量:4090 次
发布时间:2019-05-25

本文共 1801 字,大约阅读时间需要 6 分钟。

让我们来看一个经典的神经网络。这是一个包含三个层次的神经网络。红色的是输入层,绿色的是输出层,紫色的是中间层(也叫隐藏层)。输入层有3个输入单元,隐藏层有4个单元,输出层有2个单元。后文中,我们统一使用这种颜色来表达神经网络的结构。

一、感知器

1958年,计算科学家Rosenblatt提出了由两层神经元组成的神经网络。他给它起了一个名字--“感知器”(Perceptron)(有的文献翻译成“感知机”,下文统一用“感知器”来指代)。感知器是由两层神经元组成的结构,输入层用于接受外界输入信号,输出层(也被称为是感知器的功能层)就是M-P神经元。原来MP模型的“输入”位置添加神经元节点,标志其为“输入单元”。其余不变,于是我们就有了下图:从本图开始,我们将权值w1, w2, w3写到“连接线”的中间。

 

在“感知器”中,有两个层次。分别是输入层和输出层。输入层里的“输入单元”只负责传输数据,不做计算。输出层里的“输出单元”则需要对前面一层的输入进行计算。我们把需要计算的层次称之为“计算层”,并把拥有一个计算层的网络称之为“单层神经网络”。

假如我们要预测的目标不再是一个值,而是一个向量,例如[2,3]。那么可以在输出层再增加一个“输出单元”。下图显示了带有两个输出单元的单层神经网络,其中输出单元z1的计算公式如下图。

 同理,计算Z2

据上图不难理解,感知机模型可以由如下公式表示:

 

                       y=f(wx+b)

 

其中,w为感知机输入层到输出层连接的权重,b表示输出层的偏置。事实上,感知机是一种判别式的线性分类模型,可以解决与、或、非这样的简单的线性可分(linearly separable)问题,我们可以用决策分界来形象的表达分类的效果。决策分界就是在二维的数据平面中划出一条直线,当数据的维度是3维的时候,就是划出一个平面,当数据的维度是n维时,就是划出一个n-1维的超平面。下图显示了在二维平面中划出决策分界的效果,也就是感知器的分类效果。线性可分问题的示意图见下图:

 但是由于它只有一层功能神经元,所以学习能力非常有限。事实证明,单层感知机无法解决最简单的非线性可分问题——异或问题。

二、两层神经网络(多层感知器)

两层神经网络除了包含一个输入层,一个输出层以外,还增加了一个中间层。此时,中间层和输出层都是计算层。我们扩展上节的单层神经网络,在右边新加一个层次(只含有一个节点)。现在,我们的权值矩阵增加到了两个,我们用上标来区分不同层次之间的变量。

 计算最终输出z的方式是利用了中间层的a1(2),a2(2)和第二个权值矩阵计算得到的,如下图。

 

假设我们的预测目标是一个向量,那么与前面类似,只需要在“输出层”再增加节点即可。我们使用向量和矩阵来表示层次中的变量。a(1),a(2),z是网络中传输的向量数据。W(1)和W(2)是网络的矩阵参数。

使用矩阵运算来表达整个计算公式的话如下:

  g(W(1) * a(1)) = a(2); 

g(W(2) * a(2)) = z;

由此可见,使用矩阵运算来表达是很简洁的,而且也不会受到节点数增多的影响(无论有多少节点参与运算,乘法两端都只有一个变量)。因此神经网络的教程中大量使用矩阵运算来描述。

  需要说明的是,至今为止,我们对神经网络的结构图的讨论中都没有提到偏置节点(bias unit)。事实上,这些节点是默认存在的。它本质上是一个只含有存储功能,且存储值永远为1的单元。在神经网络的每个层次中,除了输出层以外,都会含有这样一个偏置单元。正如线性回归模型与逻辑回归模型中的一样。偏置单元与后一层的所有节点都有连接,我们设这些参数值为向量b,称之为偏置。

可以看出,偏置节点很好认,因为其没有输入(前一层中没有箭头指向它)。有些神经网络的结构图中会把偏置节点明显画出来,有些不会。一般情况下,我们都不会明确画出偏置节点。 

  在考虑了偏置以后的一个神经网络的矩阵运算如下:

  g(W(1) * a(1) + b(1)) = a(2); 

g(W(2) * a(2) + b(2)) = z;

三.效果

  与单层神经网络不同。理论证明,两层神经网络可以无限逼近任意连续函数。我们知道,矩阵和向量相乘,本质上就是对向量的坐标空间进行一个变换。因此,隐藏层的参数矩阵的作用就是使得数据的原始坐标空间从线性不可分,转换成了线性可分。

参考:

 

转载地址:http://nziii.baihongyu.com/

你可能感兴趣的文章
PHP底层的运行机制与原理
查看>>
php 几个比较实用的函数
查看>>
深入了解php底层机制
查看>>
PHP中的stdClass 【转】
查看>>
XHProf-php轻量级的性能分析工具
查看>>
PHP7新特性 What will be in PHP 7/PHPNG
查看>>
比较strtr, str_replace和preg_replace三个函数的效率
查看>>
ubuntu 下编译PHP5.5.7问题:configure: error: freetype.h not found.
查看>>
PHP编译configure时常见错误 debian centos
查看>>
configure: error: Please reinstall the BZip2 distribution
查看>>
OpenCV gpu模块样例注释:video_reader.cpp
查看>>
【增强学习在无人驾驶中的应用】
查看>>
《python+opencv实践》四、图像特征提取与描述——29理解图像特征
查看>>
《python+opencv实践》四、图像特征提取与描述——30Harris 角点检测
查看>>
《python+opencv实践》四、图像特征提取与描述——31 Shi-Tomasi 角点检测& 适合于跟踪的图像特征
查看>>
OpenCV meanshift目标跟踪总结
查看>>
人工神经网络——神经元模型介绍
查看>>
人工神经网络——感知器介绍
查看>>
人工神经网络——反向传播算法(BackPropagation)
查看>>
进程的地址空间概述
查看>>